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Abstract

Non-local entanglement is considered a key resource in  The proximate step towards distributed quantum Here we describe our plans for an experimental
future quantum information processing. One of its information processing is the generation of entanglement realization of this scheme.

applications is the implementation of quantum of distant massive particles like single atoms, as e.g. [1]H.-J.Briegeletal., Phys. Rev. Lett. 81,5932 (1998).
communication schemes over long distances [1]. Such  proposed by Cabirillo et al. [4]. This scheme relies onthe [2] P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995).
non-local entanglement has been realized e.g. between  projective measurement of photons scattered from two  [3] B. B. Blinov et al., Nature 428, 153 (2004).

two photons [2] and between an atom and a photon [3]. distant atoms after excitation by acommon laser pulse. 4] C. Cabirillo et al., Phys. Rev. A 59, 1025 (1999).

Previous experiments State-of-the-art

The Barium experiment in Innsbruck, View through L2
see e.g. J. Eschner, et al., Nature 413, 495 (2001) no mirror with mirror
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¢ Next step: entanglement of distant atoms
— by long-range interaction?

— by projective measurement [4] Intended Setu p
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« Projective measurement: detect a scattered photon!
« Photon path indistinguishable
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photon scattered by atom 1 or by atom 2 RF-trap Expe cted repetiti on rate
Atom 1 Atom 2 Atom 1 Atom 2 (0, = 0.7-2Mhz, ®_,, * SMHZz)

e el R s > — g e Detection probability: Pio = 15° (2 e 2sin*(V,.)cos’ (V) e d e

¢ Detector quantum efficiency 15~0.2
¢ Solid angle of collected fluorescence ()~0.04
a“~ ¢One and only one ion excited 2sin’(V,.)cos*(V,.)=0.18
i i 4 ¢ Pulse area of excitation pulse Vs S P ~0.001
- § | ¢ Decay probability |2) — |0) d-0.92 det = -
¢ Losses induced by optical elements 1-0.9

Detector Detector

—> Final entangled state: |\P,) =[1)1/0)2+ €"” [0)1]|1)2 | _ Timing Sequence:

with relative phase @ defined by path difference V4 & + Doppler cooling
¢ Manipulation and excitation

¢ State detection
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—> 1 entangled pair per 1 s
M stable path difference — interferometric setup gied pair p

high-NA lenses vacuum translation stages e Possible improvement:

M no which-way information —>» Lamb-Dicke regime by attocube systems AG - ” :
_ . State detection conditional on photon detection
= no photon recoil http://www.attocube.com P

Conclusion Outlook

e Production of entangled states by projective measurement will be possible. e Small quantum networks: nodes (storage and local manipulation of qubits, Atoms)
connected by quantum channels (communication by sending qubits, Photons).

* Requires the combination of several mostadvanced ion trap technologies. e Distributed quantum computing and multiparty quantum communication based on

e Production of entangled states without Coulomb repulsion between ions or coupling of probabilistic entanglement of distant atoms.

atoms to (cavity) field modes. e Scalable quantum information processing with remotely located trapped ion qubits.
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